人工鱼群算法

在一片水域中,鱼往往能自行或尾随其他鱼找到营养物质多的地方,因而鱼生存数目最多的地方一般就是本水域中营养物质最多的地方,人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)就是根据这一特点,通过构造人工鱼来模仿鱼群的觅食、聚群及追尾行为,从而实现寻优,以下是人工鱼的几种典型行为

(1)觅食行为:一般情况下鱼在水中随机地自由游动,当发现食物时,则会向食物逐渐增多的方向快速游去。

(2)聚群行为:鱼在游动过程中为了保证自身的生存和躲避危害会自然地聚集成群,鱼聚群时所遵守的规则有三条:
分隔规则:尽量避免与临近伙伴过于拥挤;
对准规则:尽量与临近伙伴的平均方向一致;
内聚规则:尽量朝临近伙伴的中心移动。

(3)追尾行为:当鱼群中的一条或几条鱼发现食物时,其临近的伙伴会尾随其快速到达食物点。

人工鱼群算法特点

1)具有较快的收敛速度,可以用于解决有实时性要求的问题;

2)对于一些精度要求不高的场合,可以用此算法快速的得到一个可行解;

3)不需要问题的严格机理模型,甚至不需要问题的精确描述,这使得它的应用范围得以延伸。



前一篇:和声搜索算法

后一篇:人工免疫算法

发表评论

You must be logged in to post a comment.